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a b s t r a c t

A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is
introduced and implemented within a computational framework named Spin Dynamics by Computer
Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra
approaches to solving spin dynamics problems results from the fact that no matrix representation for
spin operators is used in SD-CAS, which determines a full symbolic character to the performed computa-
tions. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly
with the number of spins into the system and are easily mapped into analytical expressions in terms
of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions
and procedures is introduced that are essential for implementing basic spin algebra operations, such
as the spin operator products, commutators, and scalar products. They provide results in an abstract alge-
braic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the
involved spin interaction parameters and experimental conditions are also discussed. Although the main
focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR
based on a non-matrix formalism, practical aspects are also considered throughout the theoretical devel-
opment process. In particular, specific SD-CAS routines have been implemented using the YACAS com-
puter algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a
few illustrative examples.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The spectacular evolution of NMR spectroscopy from its early
experimental demonstrations to the modern applications in a wide
variety of fields, such as molecular biology [1] or quantum infor-
mation processing [2], has largely relied on the development of
theoretical tools capable to solve dynamical problems of increasing
complexity with respect to both, size of the relevant coupled spin
system, and the applied experimental methodology. Historically,
analytical treatments were the first introduced to account for a
wealth of NMR phenomena and processes as well as for accompa-
nying spectral features. With respect to the employed mathemati-
cal apparatus, and the nature of the problem being addressed, a
broad range of analytical models have been developed: from clas-
sical theories describing the motion of nuclear magnetization un-
der specific magnetic fields and relaxation, to full quantum
mechanical treatments of the evolution under generally time-
dependent anisotropic spin-spin interactions, and their coherent
manipulation by sophisticated multiple pulse techniques. Depend-
ing on the particular features looked for being emphasized, these
quantum treatments may also involve a number of distinct analyt-
ll rights reserved.
ical formalisms, which differ among themselves through the con-
sidered evolution (sub)space, basis set, representation of the spin
operators, and the employed approximation method. All these the-
oretical tools are well documented in many NMR textbooks [3–12].

A particularly high level of difficulty is encountered in solid-
state applications, where the complexity of the associated spin
interaction patterns often restricts the analytical calculations to
small systems and/or low orders of approximation. Although the
resulting simplified models do in many cases reproduce basic fea-
tures of the underlying spin dynamics fairly well, thus offering
important physical insights into the investigated phenomena, they
cannot also provide detailed quantitative information, or a correct
characterization of perturbing multi-spin effects. As such, more
and more theoretical efforts have been oriented towards the devel-
opment of alternative numerical approaches. Starting with small
routines designed for very specific purposes [13–15], this field
has witnessed a rapid evolution up to the present days when fully
featured programs [16,17], or dedicated numerical libraries
[18,19], are available for the exact simulation of virtually any kind
of NMR experiment on systems that can be considered sufficiently
large (12+ spins) [17] as to capture most of the relevant physical
properties. The impressive progress in the field has been made pos-
sible through the development of many innovative concepts
addressing both, fundamental [20–23] and practical aspects
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http://dx.doi.org/10.1016/j.jmr.2010.08.014
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http://www.sciencedirect.com/science/journal/10907807
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[24,25]: their major effect was the increase of the computational
speed and efficiency to such an extent that numerical simulations
are now considered almost indispensable in any work aimed at fur-
ther refining the NMR methodology.

Computational speed is definitely one of the biggest advantages
of numerical simulations in comparison with analytical treat-
ments. The possibility to at least partially fill this gap, and bring
the two distinct methods on more equal grounds, is studied in
the present work by introducing symbolic computations as a viable
alternative to the lengthy procedures commonly employed for ana-
lytical calculations. In particular, a symbolic computational tool
called Spin Dynamics by Computer Algebra System (SD-CAS) is
developed and illustrated on ensembles of homonuclear 1/2-spins
by implementing a set of appropriate spin algebra operations.
Compared with previous computer algebra applications to NMR
[26–34], SD-CAS has an important distinctive feature, namely,
the computations are performed at the level of abstract spin oper-
ators, which means that no matrix representation is used to per-
form the required calculations (spin operator products,
commutators, and scalar products). As such, the SD-CAS output
consists of general symbolic expressions that are valid to arbitrary
systems: for particular applications, these expressions have to be
simply evaluated by specifying the number of spins and the corre-
sponding interaction parameters. The results reported here could
contribute to renewing the interest in the analytical investigation
of NMR spin dynamics, which, despite the approximate character
of the derived models, may still offer useful information, e.g., for
the physical interpretation of the results obtained by numerical
simulations.

2. Liouville space spin dynamics

This section gives a brief overview of the basic concepts under-
lying most of the computer implementations of nuclear spin
dynamics: the emphasis will be on the distinctive features of sym-
bolic computations in comparison with the existing NMR numeri-
cal simulation programs. For simplicity, the discussion is confined
to pure quantum evolution in ensembles of homonuclear 1/2-spins
under high magnetic field truncated anisotropic spin interactions.
Extension to higher spin quantum numbers, I > 1/2, heteronuclear
systems, and presence of relaxation, is also possible but, however,
this is beyond the purpose of the present work.

Generally, any spin dynamics computation is centered around
the evaluation of the so-called time-propagator, U(t2, t1),

Uðt2; t1Þ ¼ Te
�i
R t2

t1
Hðt0Þdt0

ð1Þ

because this provides the density operator q at any time t2, from its
known expression at an earlier time, t1, as it results by solving the
Liouville-von Neumann equation,

d
dt

qðtÞ ¼ �ibHðtÞqðtÞ ¼ �i½HðtÞ;qðtÞ� ð2Þ

that is,

qðt2Þ ¼ bUðt2; t1Þqðt1Þ ¼ Uðt2; t1Þqðt1ÞUyðt2; t1Þ ð3Þ

Here, a Liouville-space description is employed where superopera-
tors are denoted by the same symbols as their equivalent Hilbert
space operators, but with an appended caret. As there are multiple
choices in defining the way a superoperator acts upon a Liouville
space vector (an operator), this must be clearly specified for each
particular case. For example, the Liouville-space quantum evolution
described by Eqs. (2) and (3) involves the action of the commutator
superoperator, and the exponential superoperator, respectively.

An analytical evaluation in a closed form of the time-propagator
(1) is possible only in two special situations, namely, for an
inhomogeneous Hamiltonian [37], when a direct integration of
the exponent is allowed because the Hamiltonian at different
moments of time commutes with itself,

Uðt2; t1Þ ¼ e
�i
R t2

t1
Hðt0Þdt0 ð4Þ

and for a time-independent Hamiltonian, when Eq. (4) further sim-
plifies to

Uðt2; t1Þ ¼ e�iHðt2�t1Þ ð5Þ

All the other situations, correspond to homogeneous time-depen-
dent Hamiltonians: in such cases the Dyson time-ordering operator
T specifies that a proper sequencing of time has to be considered
within any approximation aimed at evaluating the underlying
time-propagator (1). For example, in a power expansion approach

bUðt2; t1Þ � 1� i
Z t2

t1

bHðs1Þds1 þ ð�iÞ2
Z t2

t1

bHðs2Þds2

�
Z s2

t1

bHðs1Þds1 þ � � � ð6Þ

the time ordering is equivalent with imposing the condition
t2 > sn > � � � > s2 > s1 > t1 for the intermediate integration times sj

in the expression of the general nth order term,

bU ðnÞðt2; t1Þ ¼ ð�iÞn
Z t2

t1

bHðsnÞdsn

�
Z sn

t1

bHðsn�1Þdsn�1 � � �
Z s2

t1

bHðs1Þds1 ð7Þ

whereas in an approximation based on dividing the finite evolution
period t2–t1 in a large number n of infinitely small time-steps, s, the
requirement is that, the individual static-like propagators in the
product defining U(t2, t1)

Uðt2; t1Þ � e�iHns � � � e�iHjs � � � e�iH2se�iH1s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð8Þ

are ordered from right to left with increasing the point in time js
when the corresponding Hamiltonian Hj= H(js) is evaluated.

In a matrix representation of the involved operators, the evalu-
ation of Eq. (8) can be conveniently handled by numerical methods
and therefore constitutes the core task of any NMR simulation pro-
gram. For a detailed methodological description of the modern
numerical approaches used to date in NMR, e.g., for computing
the expectation value of an NMR observable M,

hMðt2Þi ¼ hMjqðt2Þi ¼ TrfMy bUðt2; t1Þqðt1Þg ð9Þ

based on approximation (8), the reader is referred to the specialized
literature [20,24]. However, despite the substantial progress in this
field, numerical simulations are still limited to moderately sized
spin systems, especially due to the exponential increase of the re-
quired memory and CPU time with the number of spins.

Unlike matrix calculations, most of the analytical treatments of
spin dynamics rely on an abstract operator description, and there-
fore are not suitable for numerical implementation. Alternatively,
spin operators algebra can be implemented within the so-called
Computer Algebra Systems (CAS). Here, we illustrate this concept
with the particular example of the quantum evolution in a Liouville
space defined in terms of products of Cartesian spin operators [35,
36, and references therein]. For an ensemble of N 1/2-spins, this
space is spanned by the 22N base vectors

Qj 2
1

hQjjQ ji
1; I1a; . . . ; INa|fflfflfflfflfflffl{zfflfflfflfflfflffl}

3C1
N

; I1aI2b; . . . ; I1aINb; . . . ; IN�1;aINb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
32 C2

N

; . . . ; I1aI2b � � � INc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
3N CN

N

8>><>>:
9>>=>>; ð10Þ

which are constructed by taking the all possible products of spin
operators: each a (b,c) label above stands for x, y and z, Ck

N
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represents the specified binomial coefficient, and hQjjQji is the nor-
malization factor. In the NMR literature, such a product of n spin
operators is often referred to as the n-spin correlation. Using this
concept has many advantages: for instance, it enables to associate
correlation peaks observed in multi-dimensional NMR spectra with
the occurrence of a corresponding spin-correlation term in the
expression of the density operator, or to monitor the spread of an
initial spin polarization state into multi-spin correlations under dif-
ferent (effective) spin-spin interactions.

Within this framework, density operators (or any other dynam-
ical variable) and spin interaction Hamiltonians should be
expressed in terms of the base vectors (10). For instance, consider-
ing the typical high-field truncated NMR spin interactions (e.g.,
chemical shielding, Zeeman type interactions, dipolar, and indirect
spin-spin interactions), their general expressions

H ¼
XN

i1¼1

Cði1ÞIi1a; H ¼
XN

i1 ;i2¼1

0Dði1; i2Þf ðIi1a; Ii2bÞ ð11Þ

contain single- or two-spin coupling coefficients, C (D), and charac-
teristic functions f on Cartesian spin operators. If the initial density
operator is also put in the form qðt1Þ ¼

P
j6K1

ajðt1ÞQj the evaluation
of Eq. (3) directly provides the decomposition of the density opera-
tor q(t2) in terms of the spin operator products Qj, i.e.,

qðt2Þ ¼
X
j6K2

ajðt1; t2ÞQj; ð12Þ

where K1 and K2 represent the dimension of the corresponding
Liouville subspaces (typically much smaller than 22N) within which
these density operators evolve.

In its symbolic form, the relationship (12) provides qualitative
information with respect to the spin correlations Qj generated from
an initial state during its evolution, and also, the functional depen-
dencies of the weighting coefficients aj on spin interaction param-
eters. There is a large variety of methods and formalisms that have
been introduced over the time for deriving such relationships, each
of which being adapted to solve a particular type of spin dynamics
problem. For instance, approximations based on the power expan-
sion of the time-propagator like in Eq. (6) are often employed when
dealing with large systems of dipolar coupled spins, whereas for
simple systems and time-independent Hamiltonians exact solu-
tions can be determined in principle by solving the system of linear
differential equations for the underlying dynamical variables
Q jðt2Þ ¼ bUðt2; t1ÞQj,

d
dt

Q jðtÞ ¼ �ibHQjðtÞ ¼
X
k6K2

akQ kðtÞ ð13Þ

In between these two extreme cases there are numerous examples
of methods that exploit characteristic features of the investigated
dynamical system, for instance the evolution under periodically
time-dependent Hamiltonians (continuous or discrete), which is
commonly encountered in solid-state NMR spectroscopy. However,
no matter the particular method, all of them will make extensive
use of commutators between arbitrarily complex spin-correlation
terms. Hence, this can be regarded as the most basic operation upon
spin variables. A convenient approach for fast evaluation of such
commutators, which can be easily translated into algorithms suit-
able for CAS implementation, is based upon the following properties
of the products between two spin-1/2 operators:

IjaIkb ¼ IkbIja; j–k

IjaIja ¼
1
4

; a � x; y; z

IjaIjb ¼
i
2
eabcIjc; aðb; cÞ � x; y; z and a–b–c

ð14Þ
where eabc denotes the Levi–Civita symbol.
Once an approximate (or an exact) expression for the density

operator (12) is found, the quantitative evaluation of different
observables can be obtained from Eq. (9) by projecting q(t2) onto
the observable operator M. The required operations are also easy
to implement within specific computer algebra procedures. In par-
ticular, the result of the Trace operation in (9) can be directly found
from a decomposition of the product M�q(t2) in terms of the ortho-
normal base operators Qj, because Tr{Qj} = 0 except for the case
Tr{1} = 2N. In the final step, the specified coupling and geometric
parameters need to be explicitly replaced within the analytical
expressions of the weighting coefficients aj.
3. SD-CAS implementation of spin dynamics

Following the general description in the preceding section, the
CAS implementation of spin dynamics, hereafter referred to as the
SD-CAS, will require in principle the development of two distinct
types of routines: the former are designed to implement Liouville
space operations at the symbolic level, and therefore should be con-
structed such that a general applicability is guaranteed no matter the
particular experimental conditions (e.g., static or rotating samples),
whereas the latter are needed to construct particular CAS implemen-
tations of various NMR experiments, or to solve specific spin dynam-
ics problems related to such experiments, including the quantitative
evaluation of the resulting symbolic expressions. The first type of
routines can be thus regarded as belonging to a core engine designed
to perform the basic spin-space operations, which are independent
of particular experimental details, and to provide in this way the
components that commonly enter any symbolic computation code.
From this perspective, the construction of such routines constitutes
the major objective of the present work (see Section 3.1 below), but
however their assembling within a particular application is also dis-
cussed in Section 3.2.
3.1. Symbolic computations in the Liouville space

3.1.1. SD-CAS representation of spin correlations
The fundamental difference between pure computer algebra ap-

proaches to solve spin dynamics problems and numerical methods
is considered here as coming from the fact that no matrix represen-
tation of spin operators is employed by the former. In particular,
for a general spin-correlation term,

S ¼ cði1; i2; . . . ; ipÞ � Ii1 ;xIi2 ;x � � � Iinx ;x � Iinxþ1 ;yIinxþ2 ;y � � � Iinxþny ;y

� Iinxþnyþ1 ;zIinxþnyþ2 ;z � � � Iinxþnyþnz ;z ð15Þ

in SD-CAS we introduce a four-entries nested list representation gi-
ven by

S ¼ fcði½1�;i½2�; . . . ;i½p�Þ; fi½1�;i½2�; . . . ;i½nx�g;
fi½nxþ 1 �;i½nxþ 2 �; . . . ;i½nxþ ny�g;
fi½nxþ nyþ 1 �;i½nxþ nyþ 2 �; . . . ;i½nxþ nyþ nz�gg ð16Þ

where the first element is a complex coefficient c, which generally
may depend on coupling parameters involving p nuclear spins.
The next three elements are sub-lists, each of which containing
the spin labels i[k] that correspond to the nx (ny, and nz) spin
operators Ix, (Iy, and Iz) in the product (15). Like matrices in the case
of numerical simulations, lists of the form S, hereafter called first or-
der SD-CAS lists, constitute the objects upon which basic SD-CAS
operations, e.g., commutators, are applied. They are assigned with
the following properties:
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i. The size of S increases linearly with the number m =
nx+ny+nz of the spin operators, and also depends on the
number p of the spins (p P m), within the spin-correlation
term (15).

ii. The labels i[1], . . ., i[nx+ny+nz] are all different from each
other: hence, spin correlations of the type S are equivalent,
up to a weighting coefficient, with operators within the basis
set (10), and therefore we call them to be in their irreducible
form.

iii. Depending on the context, the spin labels i[k] can be con-
sidered either fixed to some particular values, or as running
from 1 up to the maximum number of spins into the system,
N. In the first case, the numerical index k of an i label stands
for the corresponding individual k spin within the correla-
tion term, and thus i[k] in Eqs. (15) and (16) are not
required to be arranged in an ascending order with respect
to these indices. In the second case (which is the case illus-
trated in (15) and (16)), such an ordering is mandatory: here,
the relationship (16) provides the general representation for
a number N!/m! of distinct individual m-spin correlations,
which clearly illustrates the advantages of performing calcu-
lations at symbolic level.

In practice, spin correlations do not occur as standing alone
terms but rather as sums of different Sj. Examples are the base vec-
tors decomposition of the density operator shown in Eq. (12), or
two-spin interaction Hamiltonians, like the dipolar interaction
and indirect spin-spin interaction, generically given through

H2 ¼ D1ði1; i2ÞIi1 ;xIi2 ;x þ D2ði1; i2ÞIi1 ;yIi2 ;y þ D3ði1; i2ÞIi1 ;zIi2 ;z ð17Þ

All such sums of spin correlations are implemented in SD-CAS as
second order lists of which individual components Sj are first order
SD-CAS lists, that is {S1, S2, . . .}. For the two-spin interaction Ham-
iltonian (17), this reads

H2 ¼ ffD1ði½1�;i½2�Þ; fi½1�;i½2�g; fg; fgg; fD2ði½1�;i½2�Þ; fg;
fi½1�;i½2�g; fgg; fD3ði½1�;i½2�Þ; fg; fg; fi½1�;i½2�ggg ð18Þ

To conclude, the most general (and complex) object introduced in
SD-CAS is a second order list, which provides a convenient repre-
sentation for a sum of spin correlations. For practical illustration,
the spin correlations discussed above have been implemented with-
in the computer algebra package YACAS [38], together with a set of
functions and procedures that specify the structure of the associ-
ated lists, and also a few representative properties (see the Appen-
dix A). YACAS is an easy to use, general purpose Computer Algebra
System, which uses its own programming language designed for
symbolic as well as arbitrary-precision numerical computations.
The main reason for choosing YACAS to implement the SD-CAS
functions and routines is represented by its powerful scripting lan-
guage, closely related to LISP, which proved enhanced flexibility in
performing list operations. However, other CAS’s, including com-
mercial programs, may be considered equally well for alternative
implementations of SD-CAS. The most important SD-CAS functions
in Appendix A are:

IsSpinCorr(X) checks if the input list X has the structure and
defining properties required to represent a spin-correlation term,
Eq. (15). It returns True if the argument has four components
X[j], with j = 1. . .4, fulfilling the condition X[2] \ X[3] \
X[4] = {}, and False otherwise.

IsSumSpinCorr(X) checks if the input list X has the structure
required to represent a sum of spin correlations. It returns True if,
for each of its elements X[j], the function IsSpinCorr(X[j])

holds True, and returns False otherwise.
SymbOrder(X) does a symbolic reordering of the ik within a

spin-correlation term if they are running labels: as shown below,
this operation is required when working with spin correlation
sums. For example, suppose that during some calculations the fol-
lowing terms have been obtained in the expression of the density
operator:

q ¼ � � � þ Cði1; i2ÞIi1 ;xIi2 ;y þ Dði3; i5; i4ÞIi5 ;xIi3 ;y þ � � � ð19Þ

If the involved spin labels are running labels, the two terms in (19)
are equivalent, but they will not be treated accordingly by symbolic
computation programs. That is, within the associated list

rho ¼ f� � � fCði½1�;i½2�Þ; fi½1�g; fi½2�g; fgg; fDði½3�;i½5�;i½4�Þ;
fi½5�g; fi½3�g; fgg; � � �g ð20Þ

they cannot be added together in a proper way by standard CAS
routines unless the labels i[5] and i[3] in the second sub-list
are replaced by i[1] and i[2]. Also, the i[4] label has to be also
replaced by i[3] to account for the fact that such a term originates
from the mutual interactions within three-spin subsystems. Apply-
ing now the function SymbOrder to rho in (20), the density opera-
tor transforms to

rho ¼ f� � � fCði½1�;i½2�Þ; fi½1�g; fi½2�g; fgg; fDði½2�;i½1�;i½3�Þ;
fi½1�g; fi½2�g; fgg; � � �g

The way this reordering task is performed through the function
SymbOrder(X) is briefly explained in the following by consider-
ing the most general case of a spin-correlation term in Eq. (15),
where p > m, but the labels are not necessarily put in an ascend-
ing order. First, an integer pointer is introduced and incremented
from 1 up to m such that the label i[k] found at the actual
pointer position n is replaced by j[n] within both, the spin part,
and the complex coefficient c of the list. However, when p > m
the expression of the coefficient c will still contain old labels that
are left unchanged by this transformation: thus, in a second
stage, such labels are all identified and replaced by j[m+1],

. . ., j[p]. Finally, the new label identifier j is transformed back
to i, so that in the end the original list is brought to its ordered
form as in Eq. (16).

ReduceSumSpCorr(X) identifies the spin-correlation terms
within a sum that are equal with each other, and then adds them
together. In the case of running spin labels this function will be ap-
plied only after the components have been symbolically ordered as
described above. For this purpose, a standard procedure of compar-
ing the elements of a list is employed: whenever two terms in the
list are found to be identical with respect to the incorporated spin
operators, they are replaced by a single term of which new coeffi-
cient is set as the sum of their individual coefficients. Considering
the same example as above, one has:

ReduceSumSpCorrðrhoÞ ¼ f� � � fCði½1�;i½2�Þ þ Dði½2�;i½1�;i½3�Þ;
fi½1�g; fi½2�g; fgg; � � �g

The rest of SD-CAS functions in Appendix A have been introduced
for enhanced flexibility in working with lists: as will be seen in Sec-
tion 3.1.3, many of them constitute useful building blocks required
for the implementation of more complex operations, like the prod-
uct and commutator between general spin-correlation terms. Other
functions can be constructed in a similar way, depending on the
particular needs in a given symbolic computation.

3.1.2. Spin correlation products and commutators
Elementary operations, such as products of spin correlations

and commutators are implemented at the level of first order SD-
CAS lists (16), where the spin labels are considered fixed labels.
In practice, starting from two input lists X = {X[1], X[2], X[3],
X[4]} and Y = {Y[1], Y[2], Y[3], Y[4]} that represent the spin-corre-
lation terms, X and Y, the problem is to find the list Z = {Z[1], Z[2],
Z[3], Z[4]} that corresponds to the product Z = X�Y. Once this is
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calculated, the commutator [X,Y] can be also easily evaluated. The
explicit form of the incorporated list elements with respect to the
coupling parameters and spin labels is not relevant for discussion
below, so that they are generically given through X(Y,Z)[i], with
i = 1,. . .,4. The algorithm developed for determining the elements
Z[i] relies on a systematic use of the relationships (14), and con-
tains the following major steps:

i. First, we introduce the notations: (a) XiYj = X[i] \ Y[j]
with i(j) = 2,3,4 are lists of spin labels corresponding to
the spin operators that are common to X and Y; (b) dij is
the dimension of the list XiYj – this represents the number
of elements (spin labels) within the list and can be retrieved
by applying a function called Length(XiYj); (c) l = d23 �
d24 � d32 + d34 + d42 � d43 and q = 2(d22 + d33 + d44) + d23 +
d24 + d32 + d34 + d42 + d43.

ii. To determine the Ix operators within the spin correlations
product Z, there are three distinct contributions that have
to be taken into account: the Ix operators originally present
in the both, X and Y term, the Ix operators eliminated when-
ever a products of the type Ix�Ix is encountered, and the addi-
tional Ix operators that occur from products of the type Iy�Iz,

respectively. In the corresponding list representation, this
reads: Z[2]=X[2] \ Y[2]-X2Y2+X3Y4+X4Y3. Similar argu-
ments apply equally well in the case of the Iy and Iz opera-
tors, for which one gets Z[3]=X[3] \ Y[3]-X3Y3+X2Y4+
X4Y2 and Z[4]=X[4] \ Y[4]-X4Y4+X2Y3+X3Y2.

iii. The coefficient Z[1] is obtained as the product of the coeffi-
cients in the original X and Y spin correlations with an addi-
tional factor which results from performing the spin
products in Eq. (14), namely: Z[1]=X[1]Y[1]�il�2�q.

The SD-CAS implementation of the above algorithm has been
done through a function called SpProd(X,Y) – see the Appendix
B. This function is generally applicable, staring from the simplest
case of spin operator products that are easy to evaluate by hand,
e.g., Ii1 ;xIi1 ;y ¼ ði=2ÞIi1 ;z up to calculating products between arbitrarily
complex spin-correlation terms, such as X ¼ Ii1 ;xIi3 ;yIi6 ;xIi4 ;zIi7 ;yIi9 ;xIi2 ;z

and Y ¼ Ii1 ;yIi5 ;yIi6 ;xIi4 ;xIi7 ;yIi3 ;zIi2 ;xIi8 ;xIi9 ;yIi10 ;x, where the advantage of
using symbolic computations is obvious. For practical illustration,
the SD-CAS results obtained for these particular examples are given
below:

Example 1
X={1, {i[1]}, {}, {}};
Y={1, {}, {i[1]}, {}};
Z=SpProd(X,Y)

Z={Complex(0,1/2), {}, {}, {i[1]}};
Example 2

X={1, {i[1],i[6],i[9]}, {i[3],i[7]}, {i[4],i[2]}};
Y={1, {i[6],i[4],i[2],i[8],i[10]}, {i[1],i[5],i[7],
i[9]}, {i[3]}};

Z=SpProd(X,Y)

Z={Complex(0,1/512), {i[8],i[10],i[3]}, {i[5],i[4],
i[2]}, {i[1],i[9]}};

Rewritten in terms of spin operators, the result obtained in the
second example reads Z ¼ X � Y ¼ ði=512ÞIi8 ;xIi10 ;xIi3 ;xIi5 ;yIi4 ;yIi2 ;yIi1 ;zIi9 ;z.
Further, it is to be noted that the function SpProd(X,Y) provides
the results in the form of first order SD-CAS lists. To account for
the fact that in practical applications the results are generally
obtained at the level of spin correlation sums, a new function
called SumSpProd(X,Y) is introduced, of which arguments are
second order SD-CAS lists. This function is shown in Appendix B,
and the way it operates can be briefly described as follows: given
the input lists X={X1, X2, . . .} and Y={Y1, Y2, . . .}, the result of
SumSpProd(X,Y) is calculated as {SpProd(X1,Y1), SpProd(-

X1,Y2), . . .}.
According to the Liouville–von Neumann Eq. (2), the symbolic

analysis of spin dynamics essentially relies on the ability to calcu-
late commutators between spin-correlation terms: rigorously, if
the definition relationship [X,Y]=X�Y – Y�X is employed, such a task
would require to perform two spin correlation products followed
by their subtraction. Computationally, however, this is not very
efficient: instead, in SD-CAS we introduce an algorithm by which
the result of the commutator [X,Y] is simply set to either 0 or
2X�Y, depending on whether the parameter l evaluated for the
product X�Y is an odd, or an even number, respectively. As such,
the function SpComm(X,Y) is basically equivalent with the func-
tion SpProd(X,Y), except for containing the additional check
point with respect to the value of l. Similar to the case of spin prod-
ucts, a function called SumSpComm(X,Y) is introduced (see the
Appendix B), which retrieves the commutator between two spin
correlation sums. To illustrate the SD-CAS symbolic computation
of commutators we consider both, the previous examples:

Example 1

X={1, {i[1]}, {}, {}};
Y={1, {}, {i[1]}, {}};
Z=SpComm(X,Y)

Z={Complex(0,1), {}, {}, {i[1]}};
Example 2

X={1, {i[1],i[6],i[9]}, {i[3],i[7]}, {i[4],i[2]}};
Y={1, {i[6],i[4],i[2],i[8],i[10]}, {i[1],i[5],i[7],
i[9]}, {i[3]}};

Z=SpComm(X,Y)

Z={Complex(0,1/256), {i[8],i[10],i[3]}, {i[5],i[4],i[2]},
{i[1],i[9]}};

as well as another two specific examples, the first showing the case
of a zero commutator, e.g., between

X ¼ Ii1 ;xIi3 ;yIi6 ;xIi4 ;zIi7 ;yIi9 ;xIi2 ;zIi5 ;z and Y

¼ Ii1 ;yIi5 ;yIi6 ;xIi4 ;xIi7 ;yIi3 ;zIi2 ;xIi8 ;xIi9 ;yIi10 ;x;
Example 3

X={1, {i[1],i[6],i[9]}, {i[3],i[7]}, {i[4],i[2],i[5]}};
Y={1, {i[6],i[4],i[2],i[8],i[10]}, {i[1],i[5],i[7] ,i[9]},

{i[3]}};
Z=SpComm(X,Y)

Z={};

whereas the second illustrating the calculation of the commutator
between two spin correlation sums,

Example 4

X={{1, {i[1],i[3]}, {}, {i[2]}}, {1, {}, {i[2]}, {}}};
Y={{1, {}, {i[1]}, {i[2],i[3]}}, {1, {i[1]}, {}, {}},
{1, {i[2]}, {i[1]}, {}}, {1, {}, {}, {i[1]}}};
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Z=SumSpComm(X,Y)

Z={{Complex(0,-1), {i[3]}, {i[1]}, {i[2]}},
{Complex(0,1), {i[2]}, {i[1]}, {i[3]}},
{Complex(0,-1), {}, {i[1]}, {i[2]}}};

Analytically, the X and Y terms in Example 4 can be written as
X ¼ Ii1 ;xIi3 ;xIi2 ;z þ Ii2 ;y;

Y ¼ Ii1 ;yIi2 ;zIi3 ;z þ Ii1 ;x þ Ii2 ;xIi1 ;y þ Ii1 ;z;

for which it can be easily verified that

Z ¼ ½X;Y� ¼ �iIi3 ;xIi1 ;yIi2 ;z þ iIi2 ;xIi1 ;yIi3 ;z � iIi1 ;yIi2 ;z;
3.1.3. Products and commutators between general spin correlations

The description has so far referred specifically to products and
commutators between well defined spin-correlation terms, corre-
sponding to fixed spin labels. To preserve the full symbolic charac-
ter of the SD-CAS computations, however, these elementary
operations have to be incorporated next within more general
schemes applicable when spin labels are all running labels. On
the one hand, the theoretical construction of such a scheme is rel-
atively straightforward: it consists of decomposing a general spin
operator product into a large number (see below) of elementary
products between spin correlations having fixed spin labels, which
can be thus evaluated by employing the SpProd or SpComm func-
tions developed previously, and then the result is put in the form
of a spin correlations sum. On the other hand, the SD-CAS imple-
mentation represents a formidable task, because:

i. The number of elementary products required to multiply
two general spin-correlation terms A and B of the form
(15) depends on the number of their spin operators, ma

and mb, according to the formula v ¼
Pminðma ;mbÞ

k¼0 PkCma�k
ma

Ck
mb

,
with Pk, the permutations of k: this parameter corresponds
to the all distinct situations that may occur with respect to
the number of common spin operators, from 0 to min(-
ma,mb), between the A and B spin-correlation terms.

ii. At each of this v computational step the spin product oper-
ation must be followed by a symbolic ordering of the spin
labels (using the function SymbOrder) to account for the
fact that they are running labels.

iii. Finally, the calculated v spin-correlation terms should be
added together (using the function ReduceSumSpCorr)
since, as will be discussed below, many of them are equiva-
lent with respect to their spin part.

The SD-CAS functions implementing the corresponding opera-
tions have been named GenSpProd, GenSpComm, GenSumSpProd,
and GenSumSpComm: they are also explicitly shown in the Appen-
dix B. By analogy with the density matrix diagonalization in the
case of numerical simulations, the spin operator product and com-
mutator, in their most general form presented above, play a central
role for any symbolic computation of spin dynamics. This is illus-
trated in the following based on the relatively simple example of
evaluating the commutator between the spin correlations terms
A and B:

A ¼ aði1; i2; i3ÞIi1 ;xIi2 ;yIi3 ;y

B ¼ bði1; i2; i3; i4ÞIi1 ;xIi2 ;xIi3 ;yIi4 ;z

Assuming that each of the ik label above corresponds to the fixed
spin number k, the commutator C = [A,B] can be immediately eval-
uated either by conventional analytical calculations (by hand), or by
running the SD-CAS function SpComm(A,B). If the A and B are con-
sidered instead general spin correlations, i.e., each of the ik label is
running from 1 up to the maximum number of spins into the sys-
tem, N, the evaluation of their commutator requires v = 49 basic
computational steps, as described at the points (i)–(iii). For in-
stance, referring specifically to the i1 label in the Acorrelation, this
is definitely different from the i2 and the i3 labels within the same
term, but it may become equal with each of the ik (k = 1, . . . ,4) la-
bels within B, thus giving rise to four distinct situations that have
to be treated separately when computing the commutator [A,B].
Similar arguments apply also to the i2 and the i3 labels, then to
the pairs (i1, i2), (i1, i3), (i2, i3), and finally to the triplet (i1, i2, i3),
which leads in the end to the above mentioned number of distinct
elementary commuators that have to be computed (counting also
the situation when there are no common labels between A and B).

The result of running GenSpComm(A,B) function, shown in Eq.
(21),
C¼ i
aði6; i3; i4Þbði1; i2; i6; i5Þ�aði2; i6; i4Þbði6; i1; i3; i5Þ
�aði2; i6; i4Þbði1; i6; i3; i5Þ�aði2; i4; i6Þbði6; i1; i3; i5Þ
�aði2; i4; i6Þbði1; i6; i3; i5Þ

264
375Ii1 ;xIi2 ;xIi3 ;yIi4 ;yIi5 ;zIi6 ;z

� i½aði6; i4; i5Þbði1; i2; i3; i6Þ�Ii1 ;xIi2 ;xIi3 ;zIi4 ;zIi5 ;zIi6 ;z

þ i½aði3; i4; i6Þbði1; i2; i5; i4Þþaði3; i6; i4Þbði1; i2; i5; i4Þ�Ii1 ;xIi2 ;xIi3 ;xIi4 ;xIi5 ;yIi6 ;y

� i
4

aði5; i4; i2Þbði5; i4; i1; i3Þþaði5; i2; i4Þbði5; i4; i1; i3Þ
þaði5; i4; i2Þbði4; i5; i1; i3Þþaði5; i2; i4Þbði4; i5; i1; i3Þ
�aði2; i3; i4Þbði3; i4; i1; i2Þ�aði2; i3; i4Þbði4; i3; i1; i2Þ

264
375Ii1 ;yIi2 ;yIi3 ;zIi4 ;z

þ i
4

aði5; i2; i4Þbði5; i1; i3; i2Þþaði5; i4; i2Þbði5; i1; i3; i2Þ
þaði5; i2; i4Þbði1; i5; i3; i2Þþaði5; i4; i2Þbði1; i5; i3; i2Þ
�aði4; i5; i3Þbði1; i2; i5; i4Þ�aði4; i3; i5Þbði1; i2; i5; i4Þ

264
375Ii1 ;xIi2 ;xIi3 ;yIi4 ;y

� i
4

aði2; i4; i5Þbði4; i1; i5; i3Þþaði2; i4; i5Þbði1; i4; i5; i3Þ
þaði2; i5; i4Þbði4; i1; i5; i3Þþaði2; i5; i4Þbði1; i4; i5; i3Þ
�aði3; i4; i2Þbði4; i1; i3; i2Þ�aði3; i4; i2Þbði1; i4; i3; i2Þ
�aði3; i2; i4Þbði4; i1; i3; i2Þ�aði3; i2; i4Þbði1; i4; i3; i2Þ

26664
37775Ii1 ;xIi2 ;xIi3 ;zIi4 ;z

þ i
4
½aði3; i5; i4Þbði1; i2; i5; i4Þþaði3; i4; i5Þbði1; i2; i5; i4Þ�Ii1 ;xIi2 ;xIi3 ;xIi4 ;x

� i
4
½aði2; i3; i4Þbði3; i4; i1; i2Þþaði2; i3; i4Þbði4; i3; i2; i1Þ�Ii1 ;zIi2 ;zIi3 ;zIi4 ;z

� i
16

aði3; i2; i4Þbði3; i2; i4; i1Þþaði3; i4; i2Þbði3; i2; i4; i1Þ
þaði3; i2; i4Þbði2; i3; i4; i1Þþaði3; i4; i2Þbði2; i3; i4; i1Þ

� �
Ii1 ;zIi2 ;z

þ i
16

aði3; i4; i2Þbði3; i1; i4; i2Þþaði3; i2; i4Þbði3; i1; i4; i2Þ
þaði3; i4; i2Þbði1; i3; i4; i2Þþaði3; i2; i4Þbði1; i3; i4; i2Þ

� �
Ii1 ;xIi2 ;x

ð21Þ
reveals the importance of a symbolic computational tool like SD-
CAS in deriving analytic expressions in terms of spin operator prod-
ucts: in particular, the computation of the commutator C=[A,B] took
about 0.6 s on a Pentium 4 PC, which is orders of magnitude less
than the time required if the same operation would have been per-
formed by conventional analytical calculations.

The computational efficiency in evaluating the commutator be-
tween two general spin-correlation terms has been further investi-
gated by progressively increasing the number of spin operators
within B up to mb = 32, when a reasonable upper limit of about
one hour for the CPU time was reached. This corresponds to a num-
ber v � 3 � 104 of basic computational steps, which confirms the
good performances of YACAS in working with lists. However, the
greatest benefit of using a list representation for spin correlations
in SD-CAS results from the low memory usage compared with
the memory requirements in numerical simulation programs
based on a matrix representation. Specifically, it was obtained an
increase in the memory usage from 8 Mb to about 180 Mb when
going from mb = 4 to mb = 32 (which is actually not surprising tak-
ing into account the linear increase of the corresponding list size
with the number of the incorporated spin operators), whereas
the memory required to only store a matrix of size 236 � 236repre-
senting the B spin correlation cannot be provided by the existing
technology.
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3.2. Application: multi-spin correlations in dipolar coupled systems

The SD-CAS functions introduced so far implement a minimal
set of operations that are in principle sufficient for obtaining in-
sights into the NMR spin dynamics directly from the computed
symbolic expressions of relevant physical quantities. Prominent
examples are the derivation of effective Hamiltonians under vari-
ous periodic perturbations by multiple-pulse sequences, MAS,
and the combination of the two, or the evaluation of the density
operator in the form of a spin correlations sum, Eq. (12). An exam-
ple of this latter type will be presented in the following. In partic-
ular, the evolution of an initial state of transverse polarization,
q0 ¼

PN
i1

Ii1 ;x, in an N spin system under the action of mutual dipo-
lar interactions is considered within an approximation based on
the power expansion of the density operator,

qðtÞ ¼ q0 �
it
1!
½H2;q0� þ

ðitÞ2

2!
½H2; ½H2;q0�� þ . . .þ ðitÞ

n

2!

� ½H2; . . . ½H2;q0��|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

þ . . . ð22Þ

and the result will be then analyzed with respect to the multi-spin
correlations generated during the propagation process.

For this purpose, an SD-CAS script called Dens_Op_Obs has
been written (Appendix C) in which the function RhoApprox(n)

enables one to compute the nth order term in (22), according to:

qðnÞ ¼ ½H2; . . . ; ½H2;q0��|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð23Þ

This function is centered on the operation GenSumSpComm de-
scribed above, but it also contains a few auxiliary input/output
operations. Namely, the particular form of the input parameters,
i.e., the Hamiltonian, Hint, the initial density operator, q0, and a pos-
sible observable, Obs, are red from the file input.txt shown in the
Appendix C, whereas the results are written in corresponding out-
put files. Also, the special case of the homonuclear dipolar interac-
tion has been considered for Hint, i.e., D1 = D2 = �D, and D3 = 2D, in
the general form, Eq. (17), of a two-spin Hamiltonian H2.

A theoretical analysis aimed at obtaining physical insights into
the spin order propagation process described by Eq. (22) can be
performed at different levels of sophistication. In the simplest ap-
proach, the explicit dependence on spin labels is omitted from the
expression of the dipolar coefficients, D, which renders them all
equal with each other. On the one hand, this will remove the con-
nection between the weighting coefficients in Eq. (22) and the
structure of the coupled spins network, but on the other hand,
the procedure enables their quick evaluation up to relatively high
orders at modest computational costs. For instance, the calculation
of q(n) terms up to the 20th order in our example (performed by
running the SD-CAS script Dens_Op_Obs, with Hint in the input file
set to HInt:¼{{-D, {i[1], i[2]}, {}, {}}, {-D, {}, {i[1], i[2]},
{}}, {2*D, {}, {}, {i[1], i[2]}}}) took only �2.5 h on a conven-
tional Pentium 4 PC.

Historically, there have been numerous studies performed in
the past with the purpose of deriving consistent theoretical models
for the spatiotemporal growth of multiple spin/multiple quantum
coherences in extended systems of dipolar coupled spins [39–
41]. All of the models developed so far are essentially statistical
in nature: they describe the spread of the initial spin order through
a hopping process between certain points within the accessible
Liouville subspace. A disadvantage of this approach is that such
states are highly degenerated, as they are labeled according only
to the number of spin operators and/or coherence order. Put in this
context, the results obtained here even in this lowest approxima-
tion reveal the benefits of incorporating a tool like SD-CAS within
the analysis. In particular, the exact distribution with respect to
the number nx, ny, and nz of the spin operators Ix, Iy, and Iz within
each such manifold can be easily determined by symbolic compu-
tations, which provides a complete picture of the subspace where
the evolution process is confined. Using now the compact notation

S � Ii1 ;xIi2 ;x . . . Iinx ;x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
nx

� Iinxþ1 ;yIinxþ2 ;y . . . Iinxþny ;y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ny

� Iinxþnyþ1 ;zIinxþnyþ2 ;z . . . Iinxþnyþnz ;z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nz

� ½nx ny nz�;

which is appropriate when the weighting coefficients do not explic-
itly depend on spin labels, the spin correlations generated by run-
ning the script Dens_Op_Obs are listed below in Eq. (24) up to
the 10th order in the power expansion (22):

qð0Þ ) ½1 0 0�;
qð1Þ ) ½0 1 1�;
qð2Þ ) ½1 0 0�; ½1 0 2�; ½1 2 0�;
qð3Þ ) ½0 1 1�; ½0 1 3�; ½0 3 1�; ½2 1 1�;
qð4Þ ) ½1 0 0�; ½1 0 2�; ½1 0 4�; ½1 2 0�; ½1 2 2�; ½1 4 0�; ½3 0 0�; ½3 0 2�; ½3 2 0�;
qð5Þ ) ½0 1 1�; ½0 1 3�; ½0 1 5�; ½0 3 1�; ½0 3 3�; ½0 5 1�; ½2 1 1�; ½2 1 3�; ½2 3 1�; ½4 1 1�;
qð6Þ ) ½1 0 0�; ½1 0 2�; ½1 0 4�; ½1 0 6�; ½1 2 0�; ½1 2 2�; ½1 2 4�; ½1 4 0�; ½1 4 2�; ½1 60�;

½3 0 0�; ½3 0 2�; ½3 0 4�; ½3 2 0�; ½3 2 2�; ½3 4 0�; ½5 0 0�; ½5 0 2�; ½5 2 0�;
qð7Þ ) ½0 1 1�; ½0 1 3�; ½0 1 5�; ½0 1 7�; ½0 3 1�; ½0 3 3�; ½0 3 5�; ½0 5 1�; ½0 5 3�; ½0 7 1�;

½2 1 1�; ½2 1 3�; ½2 1 5�; ½2 3 1�; ½2 3 3�; ½2 5 1�; ½4 1 1�; ½4 1 3�; ½4 3 1�; ½6 1 1�;
qð8Þ ) ½1 0 0�; ½1 0 2�; ½1 0 4�; ½1 0 6�; ½1 0 8�; ½1 2 0�; ½1 2 2�; ½1 2 4�; ½1 2 6�; ½1 4 0�;

½1 4 2�; ½1 4 4�; ½1 6 0�; ½1 6 2�; ½1 8 0�; ½3 0 0�; ½3 0 2�; ½3 0 4�; ½3 0 6�; ½3 2 0�;
½3 2 2�; ½3 2 4�; ½3 4 0�; ½3 4 2�; ½3 6 0�; ½5 0 0�; ½5 0 2�; ½5 0 4�; ½5 2 0�; ½5 2 2�;
½5 4 0�; ½7 0 0�; ½7 0 2�; ½7 2 0�;

qð9Þ ) ½0 1 1�; ½0 1 3�; ½0 1 5�; ½0 1 7�; ½0 1 9�; ½0 3 1�; ½0 3 3�; ½0 3 5�; ½0 3 7�; ½0 5 1�;
½0 5 3�; ½0 5 5�; ½0 7 1�; ½0 7 3�; ½0 9 1�; ½2 1 1�; ½2 1 3�; ½2 1 5�; ½2 1 7�; ½2 3 1�;
½2 3 3�; ½2 3 5�; ½2 5 1�; ½2 5 3�; ½2 7 1�; ½4 1 1�; ½4 1 3�; ½4 1 5�; ½4 3 1�; ½4 3 3�;
½4 5 1�; ½6 1 1�; ½6 1 3�; ½6 3 1�; ½8 1 1�;

qð10Þ ) ½1 0 0�; ½1 0 2�; ½1 0 4�; ½1 0 6�; ½1 0 8�; ½1 0 1 0�; ½1 2 0�; ½1 2 2�; ½1 2 4�; ½1 2 6�;
½1 2 8�; ½1 4 0�; ½1 4 2�; ½1 4 4�; ½1 4 6�; ½1 6 0�; ½1 6 2�; ½1 6 4�; ½1 8 0�; ½1 8 2�;
½1 1 0 0�; ½3 0 0�; ½3 0 2�; ½3 0 4�; ½3 0 6�; ½3 0 8�; ½3 2 0�; ½3 2 2�; ½3 2 4�; ½3 2 6�;
½3 4 0�; ½3 4 2�; ½3 4 4�; ½3 6 0�; ½3 6 2�; ½3 8 0�; ½5 0 0�; ½5 0 2�; ½5 0 4�; ½5 0 6�;
½5 2 0�; ½5 2 2�; ½5 2 4�; ½5 4 0�; ½5 4 2�; ½5 6 0�; ½7 0 0�; ½7 0 2�; ½7 0 4�; ½7 2 0�;
½7 2 2�; ½7 4 0�; ½9 0 0�; ½9 0 2�; ½9 2 0�;

ð24Þ

From a brief inspection of the relationships (24) one should notice
on one hand that odd and even orders define independent sub-
spaces, which do not share common spin correlations; on the other
hand, if taken separately, any given odd (even) order n includes all
the spin correlations present in the previous order, n � 2, in addi-
tion to specific terms that correspond to n- and n + 1-spin correla-
tions. The spin correlations shown in (24) have been determined
by effectively computing the required commutators through the
systematic use of the GenSumSpComm SD-CAS function in the Den-

s_Op_Obs script. However, from a closer analysis of the results it
came out clearly that such rigorous calculations can be alternatively
replaced by the following rules:

nx ¼ 1;3; . . . ;n� 1
ny;nz ! are even
0 6 ny þ nz 6 n� nx þ 1

9>=>; if n is even ð25Þ

and

nx ¼ 0;2; . . . ;n� 1
ny;nz ! are odd
2 6 ny þ nz 6 n� nx þ 1

9>=>; if n is odd ð26Þ

which define a propagation pattern that can be conveniently used
for the direct evaluation of the [nx ny nz] terms up to arbitrarily high
orders n in the power expansion of the density operator.
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At the other extreme, the full expressions of the terms in Eq.
(22) are obtained when the labels of the coupled spins are explic-
itly incorporated in the corresponding dipolar coefficient, D(ij, ik). In
practice this is accomplished by running the SD-CAS script Den-
s_Op_Obs, with Hint in the input file written in its complete form,
HInt :¼{{-D(i[1], i[2]), {i[1], i[2]}, {}, {}}, {- D(i[1],

i[2]), {}, {i[1], i[2]}, {}}, {2*D(i[1], i[2]), {}, {}, {i[1],
i[2]}}}. The q(n) terms computed in this way, and transformed
to the conventional analytical representation, are listed in Eq.
(27) up to the third order:

qð1Þ ¼3iDði1 ; i2ÞIi1 ;yIi2 ;z

qð2Þ ¼ ½6Dði1; i2ÞDði1 ; i3Þþ3Dði1; i3ÞDði2 ; i3Þ�Ii1 ;xIi2 ;zIi3 ;z

þ3½Dði1; i2ÞDði1 ; i3Þ�Dði1 ; i3ÞDði2; i3Þ�Ii1 ;xIi2 ;yIi3 ;y

þ9
4

Dði1 ; i2Þ2Ii1 ;x

qð3Þ ¼3i

Dði2 ; i3ÞDði1; i4ÞDði3 ; i4Þþ4Dði2; i3ÞDði1 ; i4ÞDði1; i3Þ
�Dði2 ; i3ÞDði1; i4ÞDði2 ; i4Þ�4Dði2 ; i3ÞDði1 ; i4ÞDði1; i2Þ
þDði2 ; i3ÞDði3; i4ÞDði1 ; i3Þþ2Dði2 ; i3ÞDði1 ; i3ÞDði2; i4Þ
þDði2 ; i3ÞDði2; i4ÞDði1 ; i2ÞþDði1 ; i4ÞDði3; i4ÞDði2 ; i4Þ
�2Dði1 ; i4ÞDði1 ; i3ÞDði2; i4ÞþDði3 ; i4ÞDði1 ; i3ÞDði2; i4Þ
�4Dði1 ; i3ÞDði2 ; i4ÞDði1; i2Þ

2666666664

3777777775
Ii1 ;xIi2 ;xIi3 ;yIi4 ;z

þ3i
Dði2 ; i3ÞDði3; i4ÞDði1 ; i4Þþ2Dði1; i4ÞDði3 ; i4ÞDði2; i4Þ
þ2Dði1 ; i4ÞDði2; i3ÞDði1; i3Þþ4Dði1; i4ÞDði1 ; i3ÞDði1; i2Þ

� �
Ii1 ;yIi2 ;zIi3 ;zIi4 ;z

þ3i
Dði3 ; i4ÞDði2; i4ÞDði1 ; i4Þ�Dði3 ; i4ÞDði2; i4ÞDði1 ; i2Þ
�2Dði3 ; i4ÞDði1; i2ÞDði2; i3Þþ2Dði3; i4ÞDði2 ; i3ÞDði1; i3Þ

� �
Ii1 ;yIi2 ;yIi3 ;yIi4 ;z

þ9i
4

2Dði1 ; i3Þ2Dði2 ; i3Þþ5Dði1 ; i3Þ2Dði1; i2Þ�Dði1 ; i3ÞD2ði2; i3Þ
þ2Dði2 ; i3Þ2Dði1 ; i2ÞþDði1 ; i3ÞDði2; i3ÞDði1 ; i2Þþ3Dði1 ; i2Þ3

" #
Ii1 ;yIi2 ;z

ð27Þ

They provide the exact formulae of the specified terms in the ana-
lytical expression of the density operator with respect to both, spin
and coupling variables. For simplifying presentation, the summa-
tion over the spin labels ik has been omitted but, however, this
should be implicitly assumed within all these relationships. It is
seen that, although they are fairly simple with respect to the in-
volved spin operator products, the approximation method based
on a power expansion of the density operator makes the incorpo-
rated weighting coefficients to become extremely complex func-
tions of coupling coefficients with going to higher order terms.
For this reason, the fourth order term, of which expression extends
over three pages, is no longer listed here.

The computed symbolic expression of the density operator can
be further fed into the relationship (9) and then used for quantita-
tive investigations. The way that SD-CAS could be employed for
such a purpose is briefly illustrated in the reminder of this section.
Specifically, the most straightforward approach to calculate the
expectation value of a given NMR observable, M, based on Eq. (9)
requires a set of three successive operations: (a) evaluate the scalar
product (Trace) of the spin correlations within the product Mq(t),
(b) bring the symbolic expressions of the aj coefficients in Eq.
(12) to an algebraic form by replacing the abstract interaction
parameters (like the C and D couplings in Eq. (11)) with their cor-
responding algebraic expressions, and (c) bring these expressions
to a numerical form by replacing the coupling constants with val-
ues corresponding to the particular spin system under study, per-
form the summations over the all spins and, if necessary, perform
the orientational average.

The first step consists of an averaging over spin variables: as
such, it naturally fits within the SD-CAS framework developed
here, and thus will be the only one explicitly treated in this work.
As shown in the Appendix B, for the two different types of spin cor-
relation products introduced in SD-CAS, there are equivalent YA-
CAS functions that implement the corresponding scalar product,
namely, ScalarSpProd(X,Y,N), and ScalarSumSpProd(X,Y,N),
where N is the number of spins into the system. The practical pro-
cedure to determine the scalar product between the X and Y spin-
correlation terms is fairly simple: the value of this product is as-
signed to SpProd(X,Y)[1]*2N if the spin parts of X and Y coincide,
and to 0 if otherwise. The function ScalarSumSpProd performs
the scalar product among the all terms within the spin correlation
sums, X and Y, and then the results are added together.

In the following, we consider the particular case of measuring
the spin polarization along the x axis, i.e., the observable operator
is set to Obs ¼ Ix ¼

PN
i1

Ii1 ;x. Inserting this in Eq. (22) one obtains

hIxðtÞi ¼ 1� t2

2!
Ið2Þx ðtÞ
D E

þ t4

4!
Ið4Þx ðtÞ
D E

� t6

6!
Ið6Þx ðtÞ
D E

þ � � � ð28Þ

where the corresponding contribution to the normalized expecta-
tion value of <Ix> is:

IðnÞx ðtÞ
D E

¼ ð�itÞn

n!

hIxjqðnÞi
hIxjq0i

ð29Þ

The SD-CAS computation of the nth order term can be accomplished
by running the function Observable(N, n, Obs, t) in the Dens_O-
p_Obs script, where the list representation of the Obs operator is red
from the input file, input.txt. This operation corresponds to the
step (a) of the procedure described above and the results obtained
up to the 6th order in the power expansion (28) are displayed below
(the odd order terms are all zero).

hIð2Þx ðtÞi¼
9
22 Dði1 ; i2Þ2

hIð4Þx ðtÞi¼
27
24 Dði1 ; i2Þ

3Dði1 ; i2Þ3þDði1 ; i2ÞDði2 ; i3ÞDði1 ; i3Þ
þ3Dði1 ; i2ÞDði2 ; i3Þ2þ4Dði1 ; i2ÞDði1 ; i3Þ2þDði2 ; i3ÞDði1 ; i3Þ2

" #

hIð6Þx ðtÞi¼
9

26 Dði1 ; i2Þ

�

81Dði1 ; i2Þ5þ132Dði1 ; i2Þ3Dði2 ; i3Þ2þ108Dði1 ; i2Þ3Dði2 ; i4Þ2Dði1 ; i3Þ
þ183Dði1 ; i2Þ3Dði1 ; i3Þ2þ93Dði1 ; i2Þ3Dði3 ; i4Þþ27Dði1 ; i2Þ3Dði2 ; i4ÞDði1 ; i4Þ
þ96Dði1 ; i2Þ3Dði1 ; i4Þ2�18Dði1 ; i2Þ2Dði2 ; i3Þ3�12Dði1 ; i2Þ2Dði2 ; i3Þ2Dði1 ; i3Þ
þ30Dði1 ; i2Þ2Dði2 ; i3ÞDði1 ; i3Þ2�18Dði1 ; i2Þ2Dði1 ; i3Þ3þ12Dði1 ; i2Þ2Dði2 ; i4Þ2Dði1 ; i4Þ
þ15Dði1 ; i2Þ2Dði2 ; i4ÞDði1 ; i4Þ2þ153Dði1 ; i2ÞDði2 ; i3Þ4þ54Dði1 ; i2ÞDði2 ; i3Þ3Dði1 ; i3Þ
þ189Dði1 ; i2ÞDði2 ; i3Þ2Dði1 ; i3Þ2þ152Dði1 ; i2ÞDði2 ; i3Þ2Dði2 ; i4Þ2

þ13Dði1 ; i2ÞDði2 ; i3Þ2Dði2 ; i4ÞDði1 ; i4Þþ4Dði1 ; i2ÞDði2 ; i3Þ2Dði2 ; i4ÞDði3 ; i4Þ
þ63Dði1 ; i2ÞDði2 ; i3Þ2Dði1 ; i4Þ2þ2Dði1 ; i2ÞDði2 ; i3Þ2Dði1 ; i4ÞDði3 ; i4Þ
þ81Dði1 ; i2ÞDði2 ; i3Þ2Dði3 ; i4Þ2þ45Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3Þ3

þ55Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði2 ; i4Þ2þ84Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði2 ; i4ÞDði1 ; i4Þ
þ13Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði2 ; i4ÞDði3 ; i4Þþ38Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði1 ; i4Þ2

�4Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði1 ; i4ÞDði3 ; i4Þþ3Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i3ÞDði3 ; i4Þ2

þ14Dði1 ; i2ÞDði2 ; i3ÞDði2 ; i4Þ2Dði3 ; i4Þþ4Dði1 ; i2ÞDði2 ; i3ÞDði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þ
þ4Dði1 ; i2ÞDði2 ; i3ÞDði2 ; i4ÞDði3 ; i4Þ2þ6Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i4Þ2Dði3 ; i4Þ
�12Dði1 ; i2ÞDði2 ; i3ÞDði1 ; i4ÞDði3 ; i4Þ2þ216Dði1 ; i2ÞDði1 ; i3Þ4þ63Dði1 ; i2ÞDði1 ; i3Þ2Dði2 ; i4Þ2

þ20Dði1 ; i2ÞDði1 ; i3Þ2Dði2 ; i4ÞDði1 ; i4Þ�2Dði1 ; i2ÞDði1 ; i3Þ2Dði2 ; i4ÞDði3 ; i4Þ
þ232Dði1 ; i2ÞDði1 ; i3Þ2Dði1 ; i4Þ2þ32Dði1 ; i2ÞDði1 ; i3Þ2Dði1 ; i4ÞDði3 ; i4Þ
þ96Dði1 ; i2ÞDði1 ; i3Þ2Dði3 ; i4Þ2þ12Dði1 ; i2ÞDði1 ; i3ÞDði2 ; i4Þ2Dði3 ; i4Þ
�4Dði1 ; i2ÞDði1 ; i3ÞDði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þ�12Dði1 ; i2ÞDði1 ; i3ÞDði2 ; i4ÞDði3 ; i4Þ2

þ31Dði1 ; i2ÞDði1 ; i3ÞDði1 ; i4Þ2Dði3 ; i4Þ�16Dði1 ; i2ÞDði1 ; i3ÞDði1 ; i4ÞDði3 ; i4Þ2

þ18Dði2 ; i3Þ4Dði1 ; i3Þþ63Dði2 ; i3Þ3Dði1 ; i3Þ2�14Dði2 ; i3Þ2Dði1 ; i3ÞDði2 ; i4Þ2

�2Dði2 ; i3Þ2Dði1 ; i3ÞDði2 ; i4ÞDði1 ; i4Þþ39Dði2 ; i3Þ2Dði1 ; i3ÞDði2 ; i4ÞDði3 ; i4Þ
�26Dði2 ; i3Þ2Dði1 ; i3ÞDði1 ; i4Þ2þ3Dði2 ; i3Þ2Dði1 ; i3ÞDði1 ; i4ÞDði3 ; i4Þ
þ24Dði2 ; i3Þ2Dði1 ; i3ÞDði3 ; i4Þ2þ8Dði2 ; i3Þ2Dði2 ; i4Þ2Dði1 ; i4Þþ8Dði2 ; i3Þ2Dði2 ; i4ÞDði1 ; i4Þ2

�4Dði2 ; i3Þ2Dði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þ�36Dði2 ; i3Þ2Dði1 ; i4Þ2Dði3 ; i4Þ
þ22Dði2 ; i3Þ2Dði1 ; i4ÞDði3 ; i4Þ2þ72Dði2 ; i3ÞDði1 ; i3Þ4þ11Dði2 ; i3ÞDði1 ; i3Þ3Dði2 ; i4Þ2

þ2Dði2 ; i3ÞDði1 ; i3Þ2Dði2 ; i4ÞDði1 ; i4Þþ12Dði2 ; i3ÞDði1 ; i3Þ2Dði2 ; i4ÞDði3 ; i4Þ
þ11Dði2 ; i3ÞDði1 ; i3Þ2Dði1 ; i4Þ2þ45Dði2 ; i3ÞDði1 ; i3Þ2Dði1 ; i4ÞDði3 ; i4Þ
þ84Dði2 ; i3ÞDði1 ; i3Þ2Dði3 ; i4Þ2þ8Dði2 ; i3ÞDði1 ; i3ÞDði2 ; i4Þ2Dði1 ; i4Þ
�20Dði2 ; i3ÞDði1 ; i3ÞDði2 ; i4Þ2Dði3 ; i4Þþ4Dði2 ; i3ÞDði1 ; i3ÞDði2 ; i4ÞDði1 ; i4Þ2

�24Dði2 ; i3ÞDði1 ; i3ÞDði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þþ10Dði2 ; i3ÞDði1 ; i3ÞDði2 ; i4ÞDði3 ; i4Þ2

�16Dði2 ; i3ÞDði1 ; i3ÞDði1 ; i4Þ2Dði3 ; i4Þþ8Dði2 ; i3ÞDði1 ; i3ÞDði1 ; i4ÞDði3 ; i4Þ2

þ35Dði2 ; i3ÞDði2 ; i4Þ2Dði1 ; i4ÞDði3 ; i4Þ�Dði2 ; i3ÞDði2 ; i4ÞDði1 ; i4Þ2Dði3 ; i4Þ
�4Dði2 ; i3ÞDði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þ2�20Dði1 ; i3Þ2Dði2 ; i4Þ2Dði1 ; i4Þ
�36Dði1 ; i3Þ2Dði2 ; i4Þ2Dði3 ; i4Þþ28Dði1 ; i3Þ2Dði2 ; i4ÞDði1 ; i4Þ2

�8Dði1 ; i3Þ2Dði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þþ32Dði1 ; i3Þ2Dði2 ; i4ÞDði3 ; i4Þ2

�2Dði1 ; i3ÞDði2 ; i4Þ2Dði1 ; i4ÞDði3 ; i4Þþ49Dði1 ; i3ÞDði2 ; i4ÞDði1 ; i4Þ2Dði3 ; i4Þ
þ13Dði1 ; i3ÞDði2 ; i4ÞDði1 ; i4ÞDði3 ; i4Þ2

2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

The result obtained above is very illustrative for the complexity le-
vel that can be attained in the analytical treatment of spin dynamics
if symbolic computations are used instead of classical calculations.
However, in practice, it is exactly this high complexity the main
reason why the power expansion approach (22) is generally not
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considered an appropriate method for studying the spin order prop-
agation in strongly dipolar coupled multi-spin systems, and there-
fore replaced with various simplifying models [42].

Expressions like those derived above are very general because
they are valid for any multi-spin system of which dynamics is dri-
ven by mutual homonuclear dipolar couplings. In applications to
particular systems (with respect to the number, and the spatial
positions of the incorporated spins), such expressions will enter
as input parameters for the next two steps, (b) and (c), of the pro-
tocol outlined above. For instance, considering the simplest case of
a two spin system, all the terms containing spin labels ik, with k > 2,
in the above relationships are set to zero, and Eq. (28) transforms
to

hIxðtÞi ¼ 1� t2

2!

3
2

Dði1; i2Þ
� �2

þ t4

4!

3
2

Dði1; i2Þ
� �4

� t6

6!

3
2

Dði1; i2Þ
� �6

þ � � �

¼ cos
3
2

Dði1; i2Þt
� �

Obviously, this represents the simplest case when an exact analyt-
ical expression can be easily derived from the power expansion of
the normalized x spin-polarization. Inserting now the operations
specified at the points (b) and (c), the symbolic expression of hIx(t)i
finally transforms to

hIxðtÞi ! cos
3
2

X2

ik¼1

0Dði1; i2Þt
" #

! 1
2p

Z 2p

0
du
Z p

0
cos 3xD0

ð3 cos2 h12 � 1Þ
2r3

12

t
� �

cosðh12Þdh12

where, xD0 is the dipolar coupling between two spins separated by
1 Å, r12 is the internuclear distance (in Å), and h12 is the angle of the
internuclear vector r12 with respect to the static magnetic field. In
principle, also such operations can be performed by means of spe-
cific computer algebra procedures: however, as they will rely on
completely different principles compared with the SD-CAS func-
tions introduced here for operating in the spin space, further inves-
tigations along these lines are no longer considered in the present
work.

The last relationship constitutes a good starting point for
extending the discussion also to time-dependent Hamiltonians,
e.g., to the case of MAS. For this purpose the same Dens_Op_Obs
script can be employed, but after performing the following
changes: (i) the dipolar couplings D(i1, i2) will have to be replaced
with their time dependent expressions under MAS,

Dði1; i2; tÞ ¼ xD0

X2

m¼�2

0bmðh12Þeim/12 eimxRt ;

and (ii) the general power expansion of the time-propagator, Eq. (6),
will have to be considered when evaluating the density operator in-
stead of its static form incorporated in Eq. (22). Obviously, this will
give rise to more complex weighting coefficients in Eq. (27), but
otherwise the two cases remain equivalent with respect to the gen-
erated spin correlations. The result clearly shows that the SD-CAS
functions developed here to operate in the spin space are generally
applicable to both, static and rotating samples. As such, they are
well suited to be included within a core library of functions and pro-
cedures which provide the basic building blocks for CAS implemen-
tation of particular NMR experiments.

To conclude, the examples discussed so far demonstrate that
symbolic computations may provide new practical solutions to
more effectively cope with the inherent complexity of the dynam-
ics in extended spin systems, which is characteristic to many mod-
ern NMR techniques and applications.
4. Conclusions and outlook

The possibility of automating analytical calculations of quan-
tum spin evolution was explored in the present work. Symbolic
computations integrated within a CAS framework called Spin
Dynamics by Computer Algebra System (SD-CAS) have been shown
to represent a promising new approach for replacing the tradi-
tional manner in which such calculations are carried out (by hand)
with more powerful tools. This concept is illustrated here with the
SD-CAS implementation of the 1/2-spin operator algebra within a
Liouville space of witch base vectors are given in terms of products
of Cartesian spin operators. In practice, specific objects and opera-
tions have been coded as a set of specialized function libraries
within a Computer Algebra System named YACAS. As a most prom-
inent feature in SD-CAS, one should remark the use of a nested list
representation for spin operators instead of the matrix representa-
tion that is commonly employed in numerical simulation pro-
grams. As such, the size of spin operators scales linearly with the
number of spins into the system, and not exponentially as in the
case of the matrix representation, thus largely reducing memory
requirements in multi-spin computations. For the so defined spin
operators, functions that are essential for the SD-CAS implementa-
tion of the basic spin algebra operations, namely, the spin operator
product, commutator, and scalar product have been written for
two distinct cases: when the spin labels are either fixed to certain
values, or considered running labels, respectively.

The practical examples provided throughout this work demon-
strate the potential of SD-CAS for increasing the efficiency of ana-
lytical calculations, both, in terms of speed, and complexity level
that can be attained in various applications. However, difficulties
have also been encountered during implementation, mostly com-
ing from specific features of the employed CAS. For instance, the
YACAS built in function Simplify(x) incorporated within the
script Dens_Op_Obs was found responsible for slowing down the
computation of the q(n) terms in (27), which calls for further opti-
mization work. Also, it is important to emphasize that the func-
tions introduced in this work cover only a small part of possible
applications of symbolic computations in investigating spin
dynamics. In reality, there are many other theoretical methods, for-
malisms, and approximations commonly employed for this pur-
pose and suitable for SD-CAS implementation. For example, one
could mention the implementation of additional basis sets in terms
of the rising and lowering operators, I+ and I�, fictitious spin-1/2
operators, spherical tensor operators (which are sometimes prefer-
able to the Cartesian spin operators considered in this work),
extension to heteronuclear systems, and to spin quantum numbers
larger than 1/2. In conclusion, the present study not only that
introduces SD-CAS as a promising tool for analytical treatment of
quantum evolution in complex spin systems, but, at the same time
it opens up new areas of investigation. In particular, the next steps
in the development process should be focused on bringing SD-CAS
from the present stage of setting basic principles and concepts, to-
wards making it a fully functional symbolic computation platform.
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